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Equations describing the evolution of potential vortices and internal waves in a stably stratified fluid which fills a half-space are 
derived in Euler-Lagrmlge variables. Asymptotic series in a small parameter are constructed which give approximate solutions 
of the non-linear problem. The equations of the linear appro~dmation for a potential vortex and internal waves are independent, 
while the equations of t~ae higher-order approximations describe the interaction between the potential vortices and the internal 
waves. It is shown that distributed sources (which can be interpreted as intense atmospheric rainfall) cause an exponential increase 
in the potential vorticity, which in turn may lead to a considerable increase in the amplitudes of the internal waves. Asymptotic 
forms for the field of the internal waves in different space-time regions are constructed for the case of an exponential stratification. 

1. T H E  E Q U A T I O N S  O F  M O T I O N  I N  E U L E R - L A G R A N G E  V A R I A B L E S  

We consider the motion of an inviscid stably stratified fluid filling a half-space in the gravity field. The 
z axis of a Cartesian system of coordinates x, y, z is directed vertically upwards. In a state of  equilibrium 
the density P0 and the pressure P0 are related by the equation P'o(z) = -gP0(Z). For an ideal gas the 
function a(z) = po(z)/P~(Z) specifies the entropy distribution, where ~: = cJc~ > 1. The condition of 
stability is P'0(z) ~ 0 for an incompressible fluid and a'(z) >I 0 for an ideal gas. Without loss of generality 
we earl assume that under stability conditions the strict inequalities hold, since we can always add strictly 
monotonic functions, which are as small as desired, to the functions P0(Z) and a(z). It follows from the 
fact that the functions P0(Z) and a(z) are strictly monotonic that the density (respectively, the entropy) 
of a fluid particle tmiquely defines its distance from the coordinate plane xy in the equilibrium position. 

Consider a fluid particle which, at the instant of time t, is situated at a point in space with coordinates 
x, y, z. In the equilibrium position the same particle will be situated a distance ~(x, y, z, t) from the x, 
y coordinate plane. The function ~ retains its value in the particle and hence is the integral of the 
equations of  motion. Assuming that this function is continuous and that 0~J0z I> Co > 0, we will take 
x, y, ~, t as the independent variables and take z as one of the dependent variables. The quantity z - 

specifies the deviation of the fluid particle from the equilibrium position along the vertical. The density 
P = P0(~) remains the same in the particle if the fluid is incompressible, or the entropy a = p/p~ = a(~) 
if the fluid is an ideal gas. 

Suppose (u, ~) are the horizontal components of the velocity vector. Using the notation 

D=__~ a a 80 Ou 
0t + - - - - -  (1.1) n=0x 0y 

and employing simple considerations [1], we can convert Euler's equations and the continuity equation 
to the form 

Ou OH 80 + u~ + zrD2z OH (1.2) 
- i f -  + z, O2z =-- i f ,  at =-Try 

' 0H 2 1 
(1.3) 

Ou 80 Dz~ +Dp =~Q(x,y,~,t ) (1.4) 
p 
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where the function sQ(x, y, c, t) denotes the distribution of the sources and sinks, E is a small parameter 
and the functions n2( 0, H and N2( <) are defined by different formulae for an incompressible fluid and 
for an ideal gas: for an incompressible fluid 

H=$+@+;(“2+u2). n2 (0 = 
PX) 

_po(r)’ 

while for an ideal gas 

n2(0 = -. a’(C) 
m(S) 

If the fluid is incompressible we have Dp = 0 and the term Dplp will not occur in Eq. (1.4). If 
the fluid is compressible and a is the velocity of sound, then for slow motions the quantity Dplp = 
~Du/u(K - 1) is small compared with 6u/&x and DulDy, and Dplp can be omitted in Eq. (1.4). Hence, 
the difference between the case of a compressible and an incompressible fluid in this approximation 
will be the different definitions of the function H. In the Boussinesq approximation the quantity n2(c) 
is assumed to be small and terms containing n2(c) as a factor will be dropped from the equations. 
Henceforth we will confine ourselves to the Boussinesq approximation, although the case II + 0 does 
not differ from the case IZ = 0 except in unessential technical complications. 

We will write expressions (1.1) in the form 

D,d+(p b+aQ a awl9 - -+-, 
at ax ax ay ay a(x,y) 

n= A,w (1.5) 

d!i!+?!?!, 
ax ay 

,,-_aQ aV A2=<+% 
aY ax ’ ax ay 

Eliminating H from Eqs (1.2) we obtain 

Using the identity 

and relations (1.5), we can write Eq. (1.6) in the form 

Dr= -ar, r=t(*+%?& (1.7) 

It can be shown that in the independent variables x, y, z, t 

r = (rot v, VC) (1.8) 

Formula (1.7) can be regarded as an extension of Ertel’s formula [3] to the case when sources 
and sinks are distributed in space. In the region of space where there are no sources and sinks the 
quantity (rot v, Vp) keeps its value in liquid particles; it is usually called a potential vortex [4]. Since 
Vp = p’(C,)V<, the quantity r henceforth also be called a potential vortex. Note that if we dispense with 
the hypothesis of the slow motion of an ideal gas and we do not drop the term Dp/p in the continuity 
equation, Eq. (1.7) remains true but we must put the following in it 
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J(Dz, z)] F=  1 [~+ 

Applying the Ol~.rator A2 to Eq. (1.3) and finding A2H from Eqs (1.2), we obtain the equation 

J;att, z; J 

j2Q j J(q~,fl) 2 V V 2 = l ~ ' ~ + ' ~ ( ~ ( ' ~ , y )  +A2zD Z+( 2¥, 2['~)+(V2Z, V2 D Z)) (1.9) 

The system of three non-linear equations (1.7), (1.9) and (1.5) is obtained for the three unknown 
functions z, 9, ¥. 

We will take the initial conditions in the form 

zlt=o=l~+OtOo(x,y,l~), Dzl,=o=ego,(x,y,?~), rl,=0 = ~Y0(x,Y,~) (1.10) 

Hence, the deviation of the particle along the vertical from the equilibrium position, the vertical 
velocity of the particle and the potential vortex at the initial instant are given. The functions too, oh, Y0 
and Q are continuous and finite (or fairly rapidly decreasing at infinity). It follows from (1.5) and (1.7) 
that to determine the initial values of the functions 9 and ¥ we must solve a plane Poisson equation 
with finite and continuous fight-hand side, or with a right-hand side which approaches zero fairly rapidly 
at infinity. 

Suppose (r, 0) a~re polar coordinates in the plane. In the axisymmetric case the functions ~, ¥ and z 
depend only on r, ~ and t, and the equations and boundary conditions take the form 

l ( J2z 
A2~O+~'~t~--~+ Jr ~'~rJ =$'Q(r'~'') 

OF + ~ JF = -¢FQ(r, ~, t) 
Jt Jr Jr 

a 2 ( ,  ( a2z 

2 Jz ) =ea-~J2Q + ~ [  ~r-r j (aV J(r'z~)jr (Fz;)2 + A2zD Z+~r  ~ (D2z) (1.11) 

j2 1 J 
A2¥ = -VZ~, A 2 = ~ - I  r Jr 

D2 _~.+2Jtp (J2~o J~o 
= Jr JtJr ÷t  ~ +'~r ~ J  Jr [.Jr) Jr 2 

If the fluid is bounded below by a fixed solid wall, we will take the boundary condition in the form 

zl~,=o = e~2(x,y,t ) (1.12) 

It follows from condition (1.12) that particles of the same density are situated on the solid wall. 

2. CONSTRUCTION OF THE SOLUTION IN THE FORM OF SERIES IN 
SMALL PARAMETERS 

Suppose the region G C R 3 is bounded and has axial symmetry, and suppose the function Q has a 
carrier in G[0, T]. q~e development of a potential vortex is related not only to the value of the parameter 
E, characterizing the power of the sources, but also to the amount of fluid produced at a given point of 
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space in the time t for which the source acts. Taking this into account we introduce the functional 
parameter 

'I:= Eexp(-g! Q(r,~,t')dt') (2.1) 

and we will seek a formal solution of Eqs (1.11) with initial conditions (1.10) and boundary condition 
(1.12) in the form of series in powers of the parameters x and e 

Z=;+F-.Z0+ ~ Zk'[ k, Zk = ~ Zkm Em 
k=2 m=O 

9 = ek00 + ~, %x k, 9k = ~, tP~ e'~ (2.2) 
k=2 m=0 

r : : f . r , y  <, r,<:f.r,<,.e', 
k=l m=0 k=l ra=0 

Substituting series (2.2) into Eq. (1.11), and the initial and boundary conditions (1.10) and (1.12), 
we obtain a sequence of boundary-value problems for determining the unknown functions z ~ ,  9kin, 
Fire, ~km- 

TO determine the function Zoo we must solve a mixed problem 

Lzoo = 02Q 02 ( 02 02 ~2 "~ ( 02 ~2 ) 

~zoo ~i,==o=to(r,~), --57-t ,:o=O~(r,~), zool~;:o=o,12(r,~ ) (2.3) 

(L is the differential operator of the internal waves). 
For the limitations imposed on the known functions, the existence and uniqueness of the solution 

of problem (2.3) with the additional condition that the velocity field is bounded at infinity, can be 
established by methods of mathematical physics. For the case when N = const the solution is expressed 
explicitly in terms of convolutions with the fundamental solution of the equation Lu = 0 [4]. 

We will write the solution of problem (2.3) in the form 

Zoo = AQ+ BO~o +Coot + Dto2 (2.4) 

Explicit expressions for the linear operators A, B, C and D will be derived in the next section. 
To determine the function tpoo we must obtain the bounded solution of Poisson's equation in the plane 

A21Po o = Q(r,~,t) -02zoo / OtO~ 
We know that for a continuous fight-hand side, decreasing rapidly at infinity, a solution of Poisson's 

equation exists and is unique. 
To determine F10 and ~10 we obtain the equation 

0FI0 / 0t = 0, FI01t= 0 = Yo(r, ~), AaXlllO = -Yo(r,~) 

from which it is clear that F10 = T0(r, ~) and ¥10 = -A~T0. 
To determine z20 we obtain the mixed problem 

0 i'0¥,o av0-  0) L Z20 ffi ~ [, 0r 0r 

0Z2o 
Z20[t--0 -0,  -'~'-¢=0 =0, Z20[~=0 =0 
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The function 92o is the solution of Poisson's equation 

A2q~20 = -aZ2o / ~ t~  

Taking (2.4) into account we obtain 

- - , ,  , - -  0/ / (2.5) 

The determination of the remaining terms of series (2.2) reduces to solving inhomogeneous boundary- 
value problems for the operators L, A2 and ~9/~t with right-hand sides which depend on the previously 
obtained terms of these series, so that series (2.2) can be constructed, in principle. The principal terms 
of the asymptotic tbrm with respect to the parameters e and x have the form 

z = ~ + ezoo + x2z~o, cp = eq~oo + xhp2o, r = "to(r,~)x, ¥ =-xa-2~"to (2.6) 

where the parameter x is given by (2.1) while Zoo and z20 are given by Eqs (2.4) and (2.5). 
If the function Q(r, ~, t) is negative (i.e. the sinks are distributed over space), the functional parameter 

x defined by the function (2.1) will increase exponentially with tinae and the value of x ~ may become 
comparable with or exceed the value of e. Hence, the principal term of the asymptotic form must be 
taken in the form (2.6), and it is insufficient to confine ourselves solely to the term ~ + ezoo, which is 
found from the linear theory of internal waves. The linear theory will correctly describe the situation 
only when there are no potential vortices or they are fairly small in the specified region of space. 

Note again that m meteorology sinks can sometimes be interpreted as intense atmospheric rainfall. 
Evaporation from the ocean surface and convection lead to the formation of vast cloud areas above 
the ocean surface. ,Complex and so-far insufficiently investigated processes occur in a cloud, including 
evaporation and condensation of water vapour. The condensation process is accompanied, under certain 
conditions by precipitation in the form of rain, snow and hail. To a first approximation the precipitation 
of intense rain can be interpreted as the occurrence of sinks within the clouds. According to the theory 
described above, the potential vortices present in the atmosphere may, on being exponentially amplified, 
gather strength and lead to the formation of powerful tornado-type vortices. Other mechanisms are 
also known for the formation of atmospheric vortices related to wind shifts and the turning of an unstable 
vortex sheet into a ring vortex. Which process plays a fundamental role or which combination of processes 
leads to the actual occurrence of the vortex in the atmosphere? Further investigations are needed to 
give an answer to these questions. 

3. INVESTIGATION OF THE OPERATORS WHICH GIVE A SOLUTION 
OF THE LINEAR PROBLEM FOR N = CONST 

It follows from the results in Section 2 that the determination of the function Zmk reduces to solving 
the following mixed problem 

L u = A ( x , y , ~ , t )  

ul ,=o  = fo(x, y,~), 
t=O 

ul~= 0 = f2(x,y,t) 

(3.1) 

where the functions3~ are continuous and finite (or fairly rapidly decreasing at infinity). Similar problems 
have been investigated by many researchers. The solution is usually expressed in terms of different 
convolutions of the functions)~ with the fundamental solution of the equation Lu = 0. A fairly complete 
investigation of the fundamental solution and a detailed bibliography are given in [5, 6]. The simplest 
way of solving the houndary-value problem (3.1), unlike that used in [5], is based on the fact that after 
using a Laplace transformation in time and a simple change of variable the problem reduces to solving 
a Dirichlet problem for Poisson's equation in a half-space, which can be expressed in a known way 
in terms of potentials. By carrying out an inverse Laplace transformation we obtain a solution of 
problem (3.1) in the form of convolutions of the functions 3~ with the fundamental solution of the 
equation Lu = 0. 
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The fundamental solution for the half-space has the form 

F(x,y,~,~',t) = ~(x, y,~ - ~',t) - ~P(x,y,~ + ~',t) (3.2) 

*(x,y,~,t)=-4--- ~ ~/x2+y2+g 2 [ ~ x 2 + y 2 + ~ 2 ,  Nt ,  +~.2=1 

! sin(x~)d~ 2 ~2 sin(¢3/l - k 2 cos 2 u) (0(~,,'~) = 2 
,L q(1-~)2(~2-~.  2) = ~  0' 

du 
ql  - k 2 cos 2 u 

The solution of the mixed problem (3.1) can he written in the form of convolutions with the 
fundamental solution 

4 

u = E  Akft 
k = 0  

- ~ ( x  - x', y - y',~, ~',t)Afo(x', y',~')dx,dy,d~, Ao fo = ~  ~F 

A] j~ = ~ F(x -x' ,y-y' ,~,~',t)Aj~l(x' ,y, ,~,)dx,dy,d~, 

A2f2 - i  ~ = dt" t ~ ( x - x ' , y - y , ~ , t  t . . . .  x' ' t " d r  "~ '  
o - )I2( ,Y, ) ay 

t 

A3 f3 = 0 ~ d t ' ~  F(x-x ' ,y -y ' ,~ ,~ ' t - t ' ) f .~(x ' ,y ' ,~ ' , t ' )dx 'dy 'd~"  

(3.3) 

It follows from (3.2) that the function to(Z, x), for which various researchers have derived a variety 
of accurate and approximate solutions, plays the main role when constructing the fundamental solution. 
We will give without proof some seemingly new formulae for the function ¢o(~,, x) 

o~x,~): 2 '~ J~,÷, (~)~(i- 2x 2): i Jo(U)a, +2 :~ (~(~- 2x~)- l)J2,+,(~): 
n=O 0 n=O 

= s i n x + 2  ~ (Pn(1-2~.2)-(-l)n)J2n+!('c) 
n = 0  

(3.4) 

where J.(x) is a Bessel function and Pn(z) is a Legendre polynomial. For fixed x formulae (3.4) 
define the asymptotic form of the function ~0(Z, x) as g ~ 0 and g ~ 1. 

When O < ~ ~< g ~< 1 the following asymptotic formula holds as x --~ +oo uniformly with respect to L 

to(Z, ~) = 2 sin !c + (A o (Z)Jo 0c-)  + 1 _  AI (Z)JI 0 c - ) ) -  
I( 

-2(1 - ~.) cos I¢ + (B o (Z)J! ( it-)  + 1 _ / ~  (Z)J2 0¢- )) 

1¢+ = 1:!: ~, 1 + ~ "  1 
2 ~' Ao = ~ ,  Bo = (l + :f)~/O.(t + ~.) 

I Z+4-f+O,+X~ +~ 2 Z+3~+3~ .~  +~  2 
m 

A l = - ~  (I+~/~)(8Z(I+Z)) ~ ' -Bi= 2(1+~/~)3(8~,(1+Z))~ 

When 0 < 5 ~< ~. ~< 1 - ~ and x ~ +.o the following simpler asymptotic formula holds 

2 3/x(1_)2)  ~, 4J q'C~,(1-~.2) 
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- ~ I 1  - x 2 ) ~  x~ 8(x(1 - x 2 ))~ x~ 

3(43+2Z2 + 3Z4) . ( ~ 3(43X4 +2X 2+3)  sin(X.c+_~+...  
- -  , L "  s m , ~ - - ~ ) -  (3.5) 

128(1 - ~,2)~'2 X;~ ~. 128(Z(1 - ~,2))~'~ ~ 

It follows from (.,.2) and (3.5) that in a cone lying inside the first octant with vertex at the origin of 
coordinates as Nt -~ ** the following asymptotic formula holds (p2 = x 2 + y2, R 2 = p2 + z 2) 

-(2g)Y21VO(x'Y'Z't)=-p--'~tsin(Nt --4)r¢~ + ~---~R sin(Ntz + ~ - p ~  ~. R 4 J  

5p 2 +4z  2 • ( . . . .  n~ ( 4 z e - p  2) s i n ( N t z _ _ ~ _  
~ - ~ - s i n ~ t v ,  + ~ - ) -  8 ( p . v ~ ) 3  ~, R 4 ) 

4 5 3(43p4+88z2p2+48z 4) . (,,_ 7t~ 3(48z4+8z2p2+3p )R 5A . (Ntz ~'~ 
- sm m - - -  - sm~--~-+~-) (3.6) 
! 28(p~¢~) 5 ~ 4 ) 128(p4-~ ' )  5 

In (3.3) the fundamental solution is convoluted with infinitely differentiable and finite functions. 
Suppose their carder is situated in a region f~; then in the set 

G = { ( x, y, z ): O < X ° ~ m d n X ± ~ m a x X ± ~ l - X ° } t a  

X± = 4(  x _ x') 2 + (Y _ y,)2 + (Z + Z') 2 

the asymptotic form of the solution of problem (3.1) as Nt ---> ~* is obtained by substituting the asymptotic 
representation (3.6) into (3.2). After integrating over the region [l, terms containing harmonies of 
sin(NtX±) begin to decrease more rapidly than any negative power of Nt, since the phase of  these 
harmonies has no stationary points while the functions)~ are finite and infinitely differentiable. Assuming 
f2 = f3 = 0 we obtain the asymptotic approximation for the solution of the Cauehy problem in the form 

2 ~ n u(x, y,z,t)= - ( - ~ )  z(F,(x, y),sin( Nt +-~)+ NFo(x, y)cos( Nt +4  ) ) 

z~ ( x', y', z')ax'dy'az" 
r / ( x ,  y)  = III _x,) 2 ca ((x +(y-y')2) 5/2 

One can use (3.4) to obtain approximate formulae for (x, y, z) et G. 
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